Integrated Systems in High Reliability Applications

John H. Hatcher, M.B.A., P.E., C.P.P., LEED President, HMA Consulting

Overview

- Methodology of Systems Design for ELV Applications
- Reliability Concerns
- Integration Decision Process
- Commercial vs. Industrial Systems
- Case Study Industrial Systems
- Case Study Commercial Systems
- Cost Considerations
- Lessons Learned

Methodology for Systems Design for Extra Low Voltage Systems

- Develop an "Owner Design Requirement"
- What is the intent of each of the subsystems within the facility?
- What sources of reliability are available to support these systems?
- Define the interaction required between the facility subsystems
- Develop a schematic design of the intended monitoring system
- Perform a fault analysis on the ELV system

Key System Features - Operator Interfaces

- Operator Interfaces
 - Who needs to be able to perform what functions?
 - Remote connectivity & access
 - Remote alarming
 - Trending capability
 - Historical data recording/archiving
 - Scheduling requirements
 - Reporting capability
 - Operator interface (graphical presentation)

Key System Features - Panels

- Control and Monitoring Panels
 - What functions will they perform?
 - Can they be shared between subsystems?
 - Will they perform integration of subsystems?
 - What individual redundancy is required at the panel?
 - Processor
 - Power Supply
 - Network connectivity
 - What will happen if a panel component fails?

Key System Features - Networks

- Communications Network
 - What connectivity will be available within a structured cabling system?
 - Are dual network connections required?
 - Can "looped" network fulfill the requirements?
 - Redundancy requirements of any routers/repeaters

Key System Features - Integration

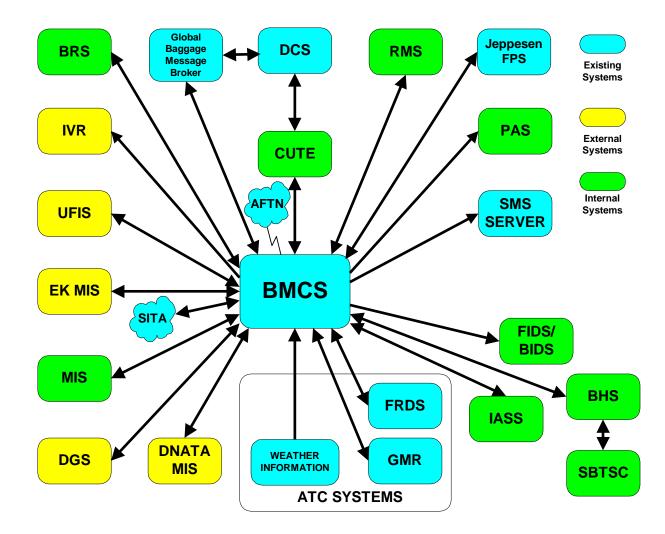
- Why Integrate Anything?
- What System(s) Will Be The Backbone?
- What Subsystems Should Be Considered?
- Customized vs. "Off of the Shelf" integration software

Integration

- Does our ODR direct us to integration?
- What is the intent of the integrated system?
- There should be a perceived benefit for interaction between building systems.
- Integration between two systems should result in the exchange of information that aids in the operations of the facility.

Integration - Backbone

- Backbone the system that will be the centralized host for passing information between systems
- Most common options
 - Automation System (i.e., building temperature control systems)
 - Access Control System
 - Separate Dedicated System
 - One of the "other" facility systems



Integration - Subsystems

- Building Management and Control System (HVAC temperature control)
- Security Access Control
- CCTV Surveillance
- Lighting Control
- Elevator Control
- Electrical Controls & Monitoring
- Computer Room AC Units
- UPS
- Electrical Paralleling Gear

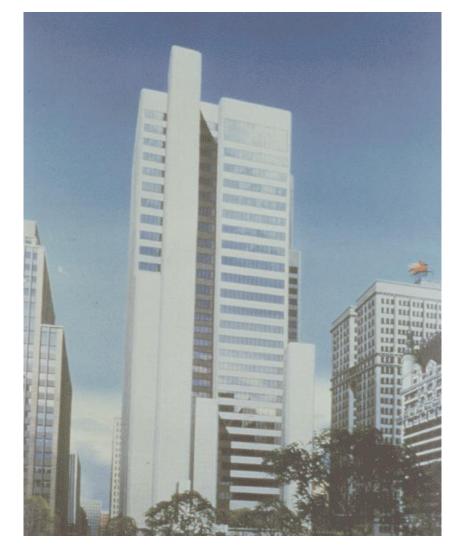
- PDU
- Standby Power Generation
- Thermal Metering
- Parking Control
- Fire Alarm
- Point of Sale
- Electrical Metering
- Fuel Monitoring and Delivery Systems
- Other special systems

AFTN - Aeronautical Fixed Telecommunication Network **BHS** - Baggage Handling System **BIDS** - Baggage Information Display System **BMCS** - Integrated Building System **BRS** - Baggage Reconciliation System **CUTE** - Common Use Terminal Equipment **DCS** - Departure Control System **DGS** - Docking Guidance System **DNATA MIS** - Dnata Management Information System **EK MIS - EmiratesManagement Information System** FIDS - Flight Information Display System FPS - Flight Planning System FRDS - Flight Refuelling Display System **GMR** - Ground Movement Radar IASS - Integrated Aircraft Stand System **IVR** - Interactive Voice Response **MIS** - Management Information System PAS - Public Address System **RMS** - Resource Management System **SBTSC** - Suspect Baggage Tracking System for Customers SITA - Société Internationale des Télécommunications Aéronautiques SMS - Short Message Service(cell phone messages)

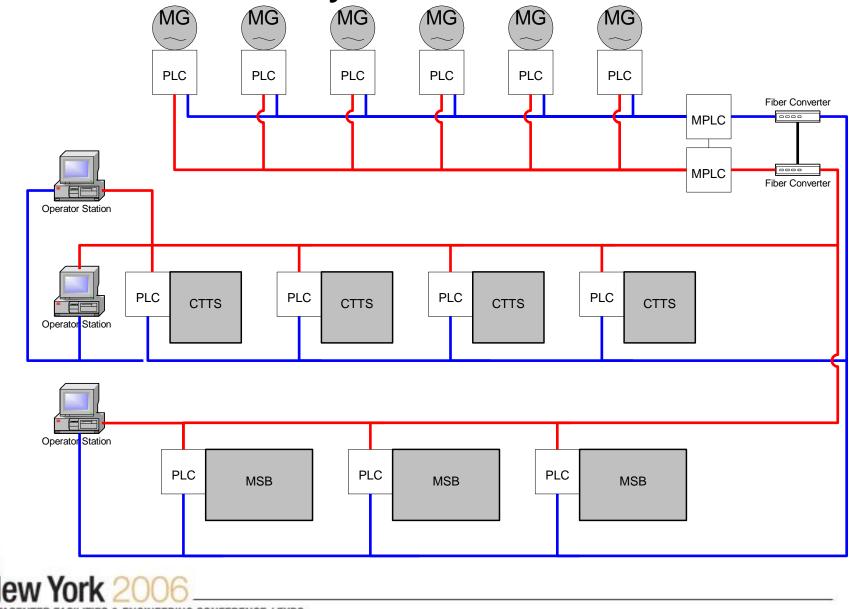
UFIS - Existing Management Information System

AVIATION SERVICES INFORMATION SYSTEMS

Industrial vs. Commercial Solutions


- Industrial
 - PLC based
 - Electrical monitoring
 - High reliability for simple control schemes
 - Dynamic simulation

- Commercial
 - Commercial Controls
 - HVAC control & monitoring
 - Electrical monitoring
 - Reasonable reliability for complex schemes


Case Study – Industrial Controls

- SBC now called AT&T
- Supports SBC system wide southern US
- 400 kSF raised floor data center for SBC Communications
- 12 level building in Dallas Central Business District
- Facility comprises:
 - Three 2,400 kW UPS 2N
 - Computer equipment is supported by 28 600 Amp static transfer switches – 2N
 - 2,000 Tons of AC N+1 on a zone (floor) basis
 - Six 2 MW standby generators paralleled with one 2 MW unit being redundant – 2N+1
 - Central cooling plant that serves downtown complex and comprises a total 7,400 tons of chiller capacity and 14-600 ton cooling towers – 2N+1

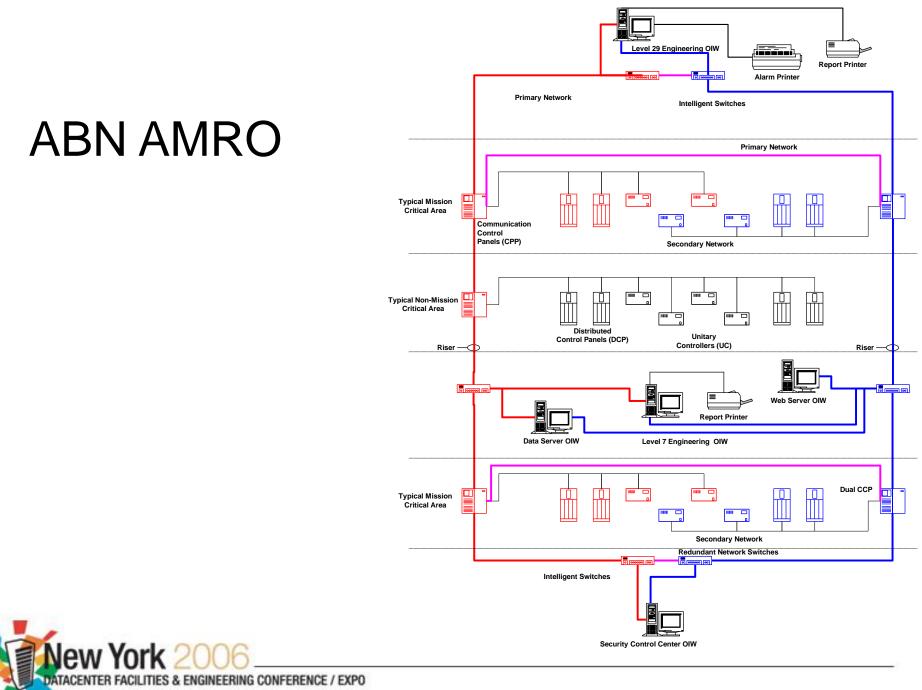
Case Study – Industrial Controls

DATACENTER FACILITIES & ENGINEERING CONFERENCE / EXPO

28th March, The Hilton New York - Avenue of the Americas

Case Study – Commercial Controls

- ABN AMRO Bank
- 1.1 Million g.s.f.
- CBD Chicago
- Public Level 2
 - Cafeteria, Health Club, Security
- Podium Levels 3-8 (300k s.f.)
 - Data Center
 - Trading Floor
 - Check Processing
 - Mail Distribution
- Tower Levels 9-29
 - 9-14 <u>High Reliability</u> support for podium functions
 - 15-29 Normal Office



Case Study – Commercial Controls

- Dual/split capability central mechanical plants 2N
- Dual chilled water distribution 2N
- Unitized mechanical system in critical areas (salt & pepper)
- Dual power feeds to site 2N
- Dual water feeds to site 2N
- Dual UPS provisions throughout 2N
- Dual power generation plant 2N

-28th March, The Hilton New York - Avenue of the Americas

Cost Considerations

- Deciding What to Integrate
- What level of integration can we afford?
- Try to use "off of the shelf" solutions
- Prepare a proper commissioning plan it will save you time, and possible money

Big John's Rules of the Road

- Have a plan on how to operate the facility
- Too much can be worse than not enough
- Be very specific in defining interoperability
- Bench-test <u>ALL</u> integration
- Commissioning is not an option
- If you are embarking on the "bleeding edge" take a first aid kit with you

John H. Hatcher, M.B.A., P.E., C.P.P., LEED President

USA Canada UK UAE India www.hmaconsulting.com Security Automation Fire Alarm Integration

2929 Briarpark Drive, Suite 325 Houston, Texas 77042, 832-242-1600

