CONSULTING

Security, Automation and Technology that works

HVAC SYSTEMS DESIGN

- HVAC systems get more complicated as efficiency is increased.
- HVAC systems typically won't support the entire building with all systems at full load.
- It is possible to exceed capacity of system.
- HVAC systems typically operate at part load conditions.
- Need to challenge engineers to consider partial load operations and after hours operations when selecting equipment.
- Require engineers to allow multiple manufacturers.

Meaning of acronyms:		Lat: Latitude, °	Long: Longitude, °	Elev: Elevation, ft
DB: Dry bulb temperature, °F	WB: Wet bulb temperature, °F	DP: Dew point temperature, °F	HR: Humidity ratio, grains of moisture per lb of dry air	WS: Wind speed, mph
MCWB: Mean coincident wet bulb temp	perature, °F	MCDB: Mean coincident dry bulb temperature, °F	HDD and CDD 65: Annual heating and cooli	ng degree-days, base 65°F, °F-day

				Heating DB		Cooling DB/MCWB				Evap	oration	WB/M	CDB	Dehumidification DP/HR/MCDB				В	Extreme			Heat./Cool.				
Station	Lat	Long	Elev			0.4%		1	1% 2%		%	0.4%		1%		0.4%		1%		Annual WS		Degree-Days				
				99.6%	99%	DB / N	ICWB	DB / N	ICWB	DB/N	ICWB	WB/	MCDB	WB / 1	MCDB	DP/	HR/M	CDB	DP/I	HR/M	CDB	1%	2.5%			/ CDD 65
Texas	2015-011																							51 site.	s, 34 more	e on CD-ROM
HOUSTON/INTERCONTIN	29.99N	95.36W	105	30.3	33.8	97.2	76.6	95.2	76.7	93.4	76.6	80.2	88.9	79.4	88.2	78.2	147.1	82.9	77.3	142.7	82.5	19.6	17.8	16.2	1371	3059

AIR COOLED CHILLERS

- Less efficient at full load.
- Partial load efficiency is more in line with centrifugal water cooled chillers.
- Minimal water consumption.

WATER COOLED CHILLERS

- More efficient at full load.
- Use water significant amounts of water.

DISTRICT CHILLED WATER

- Uses chilled water provided to the building by a district cooling plant.
- Lower upfront cost for equipment.
- Typically more expensive long term.

WATER COOLED SELF CONTAINED UNITS

- Typically less efficient than chilled water.
- Use water significant amounts of water.

VRV SYSTEMS

CHILLER EFFICIENCY COMPARISON

OUTSIDE AIR AND TOILET EXHAUST REQUIREMENTS

- Minimum flowrates required by code.
- Typically based on a CFM/square foot or air changes/minute.
- Can keep completely separate or use energy recovery for increased efficiency.

DEMAND CONTROL VENTILATION

- Allows building to use less outside air by monitoring space CO2.
- Significant energy savings by conditioning less outside air.
- Requires exhaust flows to track outside air to equalize pressures between floors.

CHILLED WATER AHU VS. WATER COOLED DX AHU

- Chilled Water AHU
 - Tighter temperature control.
 - Lower discharge air temperature.
 - Typically more expensive solution.
 - Typically utilize third party BMS to control unit.

- Water Cooled DX AHU
 - Staged compressors cause greater temperature swings.
 - Lower limit for discharge air temperature typically 52 Deg. F.
 - Typically provided with packaged controls from AHU manufacturer with interface to BMCS.
 - Starting to implement VSD for one stage to reduce temperature swings.

FAN POWERED TERMINAL UNITS

- Electronically Commutated Motors (ECM):
 - Can be used as constant speed or variable speed.
 - Variable speed control increases efficiency and reduces noise.
- SCR Heat:
 - Staged heat causes wider temperature swings.
 - SCR controllers slightly more expensive.

"SMART" BUILDINGS

- "Smart" Buildings and "Integrated" Buildings are broad terminologies:
 - Single platform for all buildings systems?
 - A BMCS interfacing to switchgear, variable speed drives, chillers, electrical meters?
 - Integrated building network supporting BMCS, security, telecom, etc?

WHAT TO INTEGRATE?

SYSTEM INTERACTIONS

	то												878	TEM				
FROM		BMCS	ACMS	CCTV	NVR	VBS	VMS	SS	EIS	FAS	PCS	LCS	EMS	TMS	BOS	POS	LDS	VSO
	BMCS		•									•						•
	AOMS			•	•	•		•	•		•	•			•			
	CCTV		•		•			•										
	NVR		•	•				•										
	VBS			•				-										
	VMS																	
	93		•	•	•				•									
	BS				•			•										
	FAS	•													•			
	PCS																	
	LCS	•																
SYSTEM	EMS																	
5-	TMS	•																
60	ECS		•															
	POS																	
	LDS																	
	VSD																	
	WOJ																	
	RLD	•																
	EPS	•								•								
	FMS	•																
	POM														4/4/4/4			
	PDU	•											•					
	UPS	-											1					

BMICS	BUILDING MANAGEMENT AND CONTROL SYSTEM	FAS	FIRE ALARM SYSTEM
ACMS	ACCESS CONTROL AND MONTORING SYSTEM	PCS	PARKING CONTROL SYSTEM
CCTV	CLOSED CROUT TELEVISION SYSTEM	LOS	LIGHTING CONTROL SYSTEM
NVR	NETWORK VIDEO RECORDING	EMS	ELECTRICAL MIETERING SYSTEM
VBS	VIDEO BADGING SYSTEM	TMS	THERMALM ETERING SYSTEM
VMS	VISITOR MANAGEMENT SYSTEM	ECS	ELEVATOR CONTROL AND MONITORING SYSTEM
SIS	SECURITY INTERCOM SYSTEM	POS	POINTOF SALE
ES	EMERGENCY INTERCOM SYSTEM	LDS	LEAK DETECTION SYSTEM

BMCS PROTOCOLS

- Require the specified system to utilize industry standard open protocols.
- "Open" Protocols:
 - BACnet TCP/IP and BACnet MS/TP.
 - LonWorks.
 - Modbus IP and RTU.
- Proprietary Protocols:
 - JCI N2.
 - Apogee P1.
 - ARCnet.

HMA CONSULTING SERVICES

- Security
- Building Automation
- Fire Alarm
- Information Technology
- Audio Visual
- Intelligent and Integrated Systems
- Structured Cabling
- Paging Systems

PROJECT PORTFOLIO

- Corporate Headquarters
- Airports
- Athletic and Recreational Centers
- High Rise Office Buildings
- Research and Laboratory
- Computing and Data Centers
- Correctional and Custodial Facilities
- Professional/Collegiate Sports Facilities
- Banking and Financial Centers
- Convention and Assembly
- Retail Shopping Centers

- Hospitals and Health Centers
- Telecommunication Service Centers
- Industrial Environments
- Office Parks
- Educational Establishments and Campus Facilities
- Agricultural Research Centers
- Television & Satellite Broadcast Centers
- Parking Facilities
- Courthouse/Law Enforcement Facilities
- Generation Facilities
- Transportation Centers

REFERENCES

- 2013 ASHRAE Handbook Fundamentals.
- The ECM Motor Story by Nailor Industries.
- San Felipe Place MEP Design Drawings, Bay Engineering.
- Concar MEP Design Drawings, ME-E Engineering.
- Memorial Lakes Phase II MEP Design Drawings, Wylie Engineering.
- Spring Crossing MEP Design Drawings, DBR.
- York YVAA0303CVV46 Chiller Performance Specifications.
- York YKGDEWP8-ESG Chiller Performance Specifications.
- Daikan WME0500S Chiller Performance Specifications.